Layer-wise training of deep generative models

نویسندگان

  • Ludovic Arnold
  • Yann Ollivier
چکیده

When using deep, multi-layered architectures to build generative models of data, it is difficult to train all layers at once. We propose a layer-wise training procedure admitting a performance guarantee compared to the global optimum. It is based on an optimistic proxy of future performance, the best latent marginal. We interpret autoencoders in this setting as generative models, by showing that they train a lower bound of this criterion. We test the new learning procedure against a state of the art method (stacked RBMs), and find it to improve performance. Both theory and experiments highlight the importance, when training deep architectures, of using an inference model (from data to hidden variables) richer than the generative model (from hidden variables to data).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Layer-wise learning of deep generative models

When using deep, multi-layered architectures to build generative models of data, it is difficult to train all layers at once. We propose a layer-wise training procedure admitting a performance guarantee compared to the global optimum. It is based on an optimistic proxy of future performance, the best latent marginal. We interpret autoencoders in this setting as generative models, by showing tha...

متن کامل

Deep Restricted Boltzmann Networks

Building a good generative model for image has long been an important topic in computer vision and machine learning. Restricted Boltzmann machine (RBM) [5] is one of such models that is simple but powerful. However, its restricted form also has placed heavy constraints on the model’s representation power and scalability. Many extensions have been invented based on RBM in order to produce deeper...

متن کامل

Why are deep nets reversible: A simple theory, with implications for training

Generative models for deep learning are promising both to improve understanding of the model, and yield training methods requiring fewer labeled samples. Recent works use generative model approaches to produce the deep net’s input given the value of a hidden layer several levels above. However, there is no accompanying “proof of correctness” for the generative model, showing that the feedforwar...

متن کامل

Greedy Layer-Wise Training of Deep Networks

Complexity theory of circuits strongly suggests that deep architectures can be much more efficient (sometimes exponentially) than shallow architectures, in terms of computational elements required to represent some functions. Deep multi-layer neural networks have many levels of non-linearities allowing them to compactly represent highly non-linear and highly-varying functions. However, until re...

متن کامل

Is Joint Training Better for Deep Auto-Encoders?

Traditionally, when generative models of data are developed via deep architectures, greedy layer-wise pre-training is employed. In a well-trained model, the lower layer of the architecture models the data distribution conditional upon the hidden variables, while the higher layers model the hidden distribution prior. But due to the greedy scheme of the layerwise training technique, the parameter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013